As Adoption of Artificial Intelligence Plateaus, Organizations Must Ensure Value to Avoid AI Winter, According to New O’Reilly Report

As Adoption of Artificial Intelligence Plateaus, Organizations Must Ensure Value to Avoid AI Winter, According to New O’Reilly Report

O’Reilly Data Shows AI Has Reached the Next Stage of the Hype Cycle; Increased Collaboration and Training Now Critical for Growth

O’Reilly, the premier source for insight-driven learning on technology and business, today announced the results of its annual AI Adoption in the Enterprise survey. The benchmark report explores trends in how artificial intelligence is implemented, including the techniques, tools, and practices organizations are using, to better understand the outcomes of enterprise adoption over the past year. This year’s survey results showed that the percentage of organizations reporting AI applications in production—that is, those with revenue-bearing AI products in production—has remained constant over the last two years, at 26%, indicating that AI has passed to the next stage of the hype cycle.

Read More: SalesTechStar Interview with Chris Weber, COO and President at SaaSOptics 

According to @OReillyMedia’s new report, #AI has reached the next stage of the hype cycle. As AI adoption plateaus, organizations must ensure value to avoid AI winter.

“For years, AI has been the focus of the technology world,” said Mike Loukides, vice president of content strategy at O’Reilly and the report’s author. “Now that the hype has died down, it’s time for AI to prove that it can deliver real value, whether that’s cost savings, increased productivity for businesses, or building applications that can generate real value to human lives. This will no doubt require practitioners to develop better ways to collaborate between AI systems and humans, and more sophisticated methods for training AI models that can get around the biases and stereotypes that plague human decision-making.”

Despite the need to maintain the integrity and security of data in enterprise AI systems, a large number of organizations lack AI governance. Among respondents with AI products in production, the number of those whose organizations had a governance plan in place to oversee how projects are created, measured, and observed (49%) was roughly the same as those that didn’t (51%).

Read More: SalesTechStar Interview with Zubin Vandrevala, VP and Head of Business and Partner Development at Gr4vy

As for evaluating risks, unexpected outcomes (68%) remained the biggest focus for mature organizations, followed closely by model interpretability and model degradation (both 61%). Privacy (54%), fairness (51%), and security (42%)—issues that may have a direct impact on individuals—were among the risks least cited by organizations. While there may be AI applications where privacy and fairness aren’t issues, companies with AI practices need to place a higher priority on the human impact of AI.

“While AI adoption is slowing, it is certainly not stalling,” said Laura Baldwin, president of O’Reilly. “There are significant venture capital investments being made in the AI space, with 20% of all funds going to AI companies. What this likely means is that AI growth is experiencing a short-term plateau, but these investments will pay off later in the decade. In the meantime, businesses must not lose sight of the purpose of AI: to make people’s lives better. The AI community must take the steps needed to create applications that generate real human value, or we risk heading into a period of reduced funding in artificial intelligence.”

Write in to psen@itechseries.com to learn more about our exclusive editorial packages and programs.