Maxim Integrated Simplifies Security for IoT Designs
New cryptographic coprocessor, integrated with physically unclonable function technology, enables end-to-end encryption
While the IoT continues to bring greater conveniences into our lives, left unprotected, smart devices could also open the door to malicious attacks that burrow into networks and attempt to access sensitive data. With its newest cryptographic coprocessor featuring ChipDNA™ physically unclonable function (PUF) technology, Maxim Integrated Products is simplifying the process of protecting these designs from security threats.
Read More: SalesTechStar Interview With Tricia Bonora, Vice President, Channels At OPAQ
Safeguarding designs that could trigger more harmful breaches is particularly critical. For example, when a smart medical device, such as a pacemaker, is hacked, this could lead to dire or even deadly consequences. Designers of these medical applications would be wise to be able to guarantee that the sensors inside their designs are genuine and to protect them from aftermarket clones; to verify that the data collected by the sensors is genuine; and to enforce usage control and expirations in the case of single- or limited-use disposable peripherals.
Another area where security is important is the industrial IoT, where an attack on automated factory equipment, for example, could disrupt the manufacturing line and lead to lost revenue. Here, it’s imperative to ensure that OEM modules are genuine and to establish point-to-point security. Feature control is another consideration. In the production world, it’s economical to manufacture, say, one board that supports multiple versions and levels of features. Enabling secure end user feature upgrades protects the integrity of those upgrades.
Read More: The Fraud Fight: Protecting Your Customer Experience Against COVID Related Attacks
In summary, securing IoT designs involves meeting these challenges:
- Safety and reliability: Prevent counterfeit components that could pose safety risks to customers.
- Key management: A weak security scheme can expose keys for protecting and encrypting sensitive data.
- Secure boot: Invalid firmware can create opportunities for malware attacks.
- Endpoint security: Secure communication and authenticity of end points must be addressed.
- Feature control: Find a way to securely enable and disable various factory-based options.
Read More: New Report: Spike In Consumer Tech Use During COVID Is Accelerating Tech Adoption